Seminar | September 30 | 2-3 p.m. | 180 Tan Hall

 Prof. Sarah Heilshorn, Stanford University, MSE & BioE & ChemE

 Berkeley Nanosciences and Nanoengineering Institute

Cell-induced matrix remodeling is a hallmark of both disease and regeneration. My lab develops biomaterials and matrix characterization methods to study these dynamic cell-matrix interactions.

In designing our biomaterials, we employ protein engineering methods with simple polymer physics models to create biomimetic extracellular matrices for culture of patient-derived organoids. These materials have allowed us to identify matrix stiffness as a previously unknown modulator of chemo-resistance in pancreatic adenocarcinoma (PDAC). Intriguingly, this cellular behavior was reversible upon modulation of the matrix stiffness, suggesting that this may be an ideal pathway for future drug targeting.

In a complementary project, we have developed a micro-rheology strategy that uses dynamic light scattering to characterize the mechanical properties of dynamic materials over time. We have used this method to measure the changes in matrix stiffness in cultures of breast cancer cells.

Interestingly, we discovered that the cells stiffen the matrix at short time-scales, while simultaneously fluidizing the matrix at long time-scales. This seemingly paradoxical stiffening and fluidization are both required for cell invasion within our culture models. Our results suggest a mechanism whereby breast cancer cells reconcile the seemingly contradictory requirements for both tension and malleability in the matrix by differential alteration of matrix mechanics across different time-scales.

Sarah Heilshorn did her PhD in ChemE at Caltech and postdoc here at UCB in MCB (Go Bears!). She joined the MSE faculty at Stanford in '06. Awards include the NSF CAREER, NIH New Innovator, and ACS New Investigator. She is Director of the Geballe Laboratory for Advanced Materials (GLAM)., 510-643-6681

 Avi Rosenzweig,,  510-643-6681

Event Date
Happening As Scheduled
Primary Event Type
180 Tan Hall
Prof. Sarah Heilshorn, Stanford University, MSE & BioE & ChemE
Nano Seminar series
Event ID